5th International Conference "Modern Economics" Springer Template: "Problems, Methods and Tools in Experimental and Behavioral Economics"

Chapter xx. Tytuł

Imię i nazwisko

Abstract Thanks to continually developing information technology.

Keywords: slowa kluczowe

1 tytuł podrozdziału

Tresc

- wypunktowanie,
- wypunktowanie,
- wypunktowanie.

Tresc.

2 tytuł podrozdziału

Tresc.

Tabela:

Table 11.1. General characteristics of properties of selected computer simulation methods (source: based on (Behdani 2012))

System dynamics	Discrete event simulation	Multi-agent simulation
System-oriented, focused on modelling aggregates.	Process-oriented, focused on details of a modelled system.	Agent-oriented, focused on modelling agents and their interactions.
Homogeneous system ele- ments; assumed similar char-	Heterogeneous elements.	Heterogeneous objects (agents)

5th International Conference "Modern Economics" Springer Template: "Problems, Methods and Tools in Experimental and Behavioral Economics"

System dynamics	Discrete event simulation	Multi-agent simulation
acteristics of system elements; averaging of values.		-
No representation on micro level.	Elements on micro level are passive objects running through a system in an imitated process (they are attributed neither with intelligence nor with decision-making capacity).	one another as well as with their
Imitation of dynamic behaviour by means of feedback loops.	Imitation of dynamic behaviour by means of events.	Imitation of dynamic behaviour by means of agents' decisions and interactions.
Mathematical formalisation based on concept of stocks-and-flows	Mathematical formalisation based on concept of event-action-process	Mathematical formalisation based on concept of agent-environment
Continuous or quasi- continuous functions used to describe time flow	Discrete functions used to describe time flow.	Discrete functions used to describe time flow.
Experimenting through changes in system structure.	Experimenting through changes in a process structure.	Experimenting through changes in agents' behaviour rules (internal/external rules) and in system structure.
System structure is stable.	Process is stable.	System structure is not stable.

Równanie:

$$y_2 = a_{21} (b_{11} x_1 + b_{12} x_2) + b_{23} x_3$$
 (4.4)

Rysunek:

5th International Conference "Modern Economics" Springer Template: "Problems, Methods and Tools in Experimental

Fig. 14.1. The course of the research procedure

References

Abrams D (2009) Learning about real economics in virtual worlds. http://economics.rutgers.edu/dmdocuments/DavidAbrams1.pdf. Accessed 4 March 2015

Atlas S (2008) Inductive Metanomics: Economic Experiments in Virtual Worlds. Journal of Virtual World Research 1(1): 1-15

Atlas S, Putterman L (2010) Trust among the avatars: a virtual world experiment, with and without textual and visual cues. Working Papers. Brown University. http://www.brown.edu/academics/economics/sites/brown.edu.academics.economics/files/upl oads/2010-18_paper.pdf. Accessed 4 March 2015

Axelrod R (1997) Advancing the art of simulation in social science. In: Conte R, Hegsel-mann R, Terna P (eds), Simulating social phenomena. Springer, Berlin, pp 21-40

Bainbridge WS (2007) The Scientific Research Potential of Virtual Worlds. Science 317: 472-476

Banks J, Carson J, Nelson B, Nicol D (2005) Discrete-event system simulation. Fourth edi-tion. Pearson

Barberousse A, Franceschelli S, Imbert C (2008) Computer simulations as experiments. Synthese 169(3): 557–574

Behdani B (2012) Evaluation of paradigms for modeling supply chains as complex sociotechnical systems. In: Proceedings of the 2012 Simulation Conference WSC. Huntington, California, 9-12 December 2012, pp 1-15. doi: 10.1109/WSC.2012.6465109